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The problem considered here is that of a finite, rigid insert partially embedded in and 
adhesively bonded to an elastic half plane. Two distinct problems are investigated: the 
shear pullout of the insert without rotation, which takes into account the adhesive’s 
resistance to shear deformation, and an opening problem which incorporates the 
adhesive’s resistance to normal deformation. This latter problem assumes the presence 
of an edge crack in the half plane subjected to opening pressure which equals in 
magnitude the normal stress distribution due to the pullout problem. These mixed 
boundary value problems are governed by singular integral or integrodifferential 
equations. Numerical results are obtained via a technique introduced by Gerasoulis and 
Srivastav. Several important physical quantities are calculated, such as the shear and 
normal stress distributions along the bonded interface, and the crack opening dis- 
placements. 

1. INTRODUCTION 

The problem of a rigid insert partially embedded in and adhesively 
bonded to an elastic half space is considered within the context of plane 
elastostatics. The thickness of the insert is assumed to be neg- 
ligible. It is also assumed that the adhesive’s deformation remains in 
the linear elastic range. The thickness of the adhesive is small, but not 
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132 G. K. HARIT'OS AND L. M. KEER 
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FIGURE 1 
insert undergoing shear displacement. 

Geometry and coordinate system for a partially embedded finite rigid 

negligible. The adhesive layer is modeled as a series of linear springs 
subjected to shear or tension. 

Loading is applied to this insert so that it translates in the 
vertical direction without rotation (Fig. I). Of interest here are the shear 
and normal stresses generated along the bonded interface. These 
stresses will cause the adhesive to undergo both shear and normal 
deformation. Two distinct problems are considered: the shear pullout 
problem already described, which takes into account the adhesive's 
resistance to shear deformation, and the opening problem, described 
next, which considers the adhesive's resistance to normal deformation. 
The opening problem assumes an edge crack in a half space subjected 

I to opening pressure which is equal in magnitude to the normal stress 
distribution resulting from the pullout problem. In this case, the adhesive 
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ADHESIVELY BONDED INSERT 133 
material’s resistance to normal deformation is used to reduce the opening 
pressure’s intensity. The physical quantities of interest in this problem 
are the crack opening displacements. 

The problems considered here can be viewed as appropriate 
idealizations for studying two separate, yet similar, classes of problems. 
In the context in which they have been presented thus far, they are 
problems in plane strain. As such, they are appropriate for 
investigating the mechanics of interface failure in fiber-reinforced 
composite materials. The more realistic case of adhesive failure (ad- 
hesive material allowed to deform non-linearly) is currently being 
considered by the authors. As pointed out by Brussat and Westmann’ 
and by Chamis,2 interface damage is believed to be one of the 
earliest forms of damage in such composite materials. The subject of 
fiber debonding has attracted several investigators over the last several 
years (see references 1 and 2 for summary). One fundamental question 
that seems to remain still unanswered, and which is addressed in this 
paper, is whether the surfaces of a crack at the fiber-matrix interface 
are traction-free, or remain in contact. It is suggested by Westmann 
that the debonded surfaces may be open or closed depending on the 
relative magnitude of the applied versus the residual stresses. 

In the generalized plane stress context, these problems deal with finite 
rigid inserts of negligible width, partially embedded within a semi- 
infinite elastic sheet. In this case, the results obtained may serve to 
understand better the stress distribution at the bonded interface of 
dissimilar materials, where one is significantly more rigid than the other. 
More importantly, an extension of this work which will be addressed 
in the near future will consider the case of an elastic insert of 
finite width embedded in an elastic half plane. That problem would 
be applicable to several physical situations, such as the primary 
adhesively bonded aircraft fuselage being considered by the U.S. Air 
Force.3 

The problems are formulated as mixed boundary value problems. 
This leads to singular integral or integrodifferential equations, which 
are solved numerically for the desired physical quantities by use of a 
numerical technique introduced by Gerasoulis and Sriva~tav.~.’ The 
material constants selected for the adhesive and for the adherend 
material correspond to materials commercially available. 
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2. FORMULATION AND BASIC EQUATIONS 

The formulation of the problems considered in this investigation makes 
use of certain results obtained in two earlier papers.6*' Those papers 
considered the problem of a finite, rigid block embedded in an elastic 
half space,6 and that of a rectangular trench in an elastic half plane.' 
The problems were formulated by superposition of the solutions for 
rigid line inclusions and cracks, respectively, parallel and perpendicular 
to the free surface of the half plane. The results which pertain to the 
present work are those derived in reference 6 for a rigid line 
inclusion perpendicular to the free surface of the half plane, and the 
ones derived in reference 7 for an edge crack. 

G. K. HARITOS AND L. M. KEER 

A. Rigid insert pullout: The shear mode 

A rigid line inclusion is partially embedded in and bonded to an 
elastic half plane, y>O, so that it occupies the line segment OSySh,  
x = 0 in the half plane. The inclusion is loaded by a force P acting 
along the negative y-axis as shown in Fig. 1. The material properties 
of the half plane are taken as p and IC; p is the shear modulus, while 
K is related to Poisson's ratio u by K = 3-4u (plane strain), or 
K = (3-v)/(l+ v) (generalized plane stress). The inclusion is assumed to 
be bonded to the half plane by use of some adhesive material in such 
a manner that there are no discontinuities in the application of the 
adhesive to the inserted inclusion, and no significant variations in its 
thickness, which is also assumed to be negligibly small (less than 
5 x in.). The adhesive is assumed to behave as a number of 
linear springs, subjected to shear in this case. The stiffness of these 
springs, k,, is computed using the mechanical properties of the adhesive. 
This is discussed in detail in a later section. 

The shear stress developed in the adhesive (and transferred to the 
half plane) may be written as follows: 

Here, uo is a constant representing the y-displacement of the rigid 
inclusion, while uy designates the y-displacement of the half plane 
material. Thus, the quantity in the brackets gives the displacement of 
the insert relative to the half plane, which is also the shear deforma- 
tion of the adhesive. The constant k, is, as defined earlier, the stiff- 
ness of the adhesive modeled as a shear spring. 
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ADHESIVELY BONDED INSERT 135 

The displacement u, cannot be calculated. Differentiation of (2.1) 
with respect to y yields the following equation: 

The left-hand side of eqn (2 .2)  is given in terms of a singular 
integral equation derived in reference 6 using integral transform 
 technique^.^.^ When that result is used, equation (2.2) takes on the 
following form: 

1 D( t)dt (K - 2[2t - KO, + r ) ]  
4n (K + 1)p 0 Y -  0 + o2 

l a  + ““-]dt] = - - [T~,.(x,  y ) ] ;  x = 0, 0 2 y 5 h (2.3)  0, + ks ay 

The function DQ) is the unknown shear stress discontinuity associated 
with the rigid inclusion and it is defined as follows: 

DQ) = txy(’) - txy(l); X =  0, O S y $ h  (2.4) 

The superscripts (1) and (2) denote the regions to the left and to the right 
of the inclusion, respectively. The symmetry of the problem requires 
that oXy(’) = - ~,y(l). Clearly then, the following relation must hold 
between T~~ and D: 

Substitution of eqn (2 .5)  into eqn (2 .3)  leads to the following 
integrodifferential equation in the unknown DQ): 

Here, the function K(y,t)  is given as follows: 

1 ( K -  1)2 2 [ 2 t -  KO, + t)] 8yt +-] (2 .7)  cv+ OZ cv + o3 K(y,t)  = --[-- 2K y + ?  - 

a 
aY 

It should be noted here that the expression for -u, substituted in 
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136 0. K. HARITOS AND L. M. KEER 
eqn (2.2) to obtain eqn (2.3) was derived in reference 6 so that the 
following conditions are satisfied: 

t y y  = fxy  = 0; y = 0, 0s 1x1 < ot (2.9) 
Equation (2.8) requires that the displacements on either side of the 
inclusion be continuous, while eqn (2.9) clears the half plane surface 
of stresses. 

Equilibrium in the y-direction is satisfied by requiring that the fol- 
lowing relationship hold: 

(2.10) 

Thus, the solution of the shear pullout of the rigid insert 
problem consists of solving the governing integrodifferential equation 
(2.6) for the unknown D@) subject to the equilibrium condition (2.10). 
The solution is obtained by means of numerical methods as will be dis- 
cussed in the numerical analysis section. 

Once D@) has been determined the stresses generated along the bond 
line are readily obtained. The shear stresses are computed using eqn 
(2.5), while the normal stresses are obtained from the following:6 

(2.11) 

The function L(y,  t )  is defined as: 

2(3 t -~y)  --I 8yt (2.12) + 
0, + t ) 2  0, + r )3  

B. Rigid insert pullout: The opening mode 

The normal stress distribution generated along the bond line of the in- 
sert during pullout is now applied as opening pressure on an edge 
crack in the ha!f plane. It is assumed that the crack extends from 
y = 0 to y = h and it is located at the bond line, x = 0. The adhesive 
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137 ADHESIVELY BONDED INSERT 
material in this case behaves as a number of linear springs of stiffness 
k subjected to tension. Thus, it resists the opening of the crack by 
providing a stress equal to k(COD/2) which reduces the intensity of the 
applied opening pressure. The crack opening displacement (COD) is the 
distance between the crack surfaces. 

The normal stresses within a half plane containing an edge crack are 
given in reference 7. The bond line stresses are given in terms of the 
dislocation density B(y) as: 

O S y S h  (2.13) 

Here, p and K are the half space material constants given earlier. The 
superscript c is used to distinguish these norm:il stresses from the ones 
associated with the shear pullout problem. The dislocation density 
BCy) is defined as: 

(2.14) 
a 

aY 
B(y)  = - [Ux(Z)  - U X q  x = 0, 0 5 y h 

The supe'rscripts (1) and (2) refer to the half plane regions to the left 
and to the right of the crack, respectively. The singular integral 
equation (2.13) was derived in reference 7 using integral transform 
techniques. 

The governing equation for this problem is formulated by replacing 
T~~~ in eqn (2.13) by the difference between the opening pressure and the 
spring-induced resisting stress. This leads to the following equation: 

- - - - - [ - r X x ( O , y ) + t ( ~ ) ] ; x = O , O ~ y ~ h  n ( K f  1) COD (2.15) 

2P 

As stated earlier, the opening pressure T~~ is the one obtained from 
the shear pullout case, and k is the equivalent spring constant for the 
adhesive. Following eqn (2.14) the crack opening displacement at y is 
given by: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
1
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



138 G. K. HARITOS AND L. M. KEER 

COD(y) = [ui2’ - u L ” ] ~  = -[!B(t)dt; 0 JJ h, x = 0 (2.16) 

Equations (2.15) and (2.16) are solved numerically for the crack 
opening displacements and the dislocation densities. The procedure is 
discussed in detail in the next section. 

3. NUMERICAL ANALYSIS 
The procedure for obtaining numerical results for the shear pullout of 
the rigid insert problem is discussed first. The governing integrodifferen- 
tial equaltion, (2.6), and the equation of equilibrium, (2.10), are 
normalized by introducing the following variable changes: 

y = + h ( j  + 1); t = $h(F+ 1) (3.1) 
The function D(t) is non-dimensionalized and given square root 
singularities at its ends by making the following substitution: 

2P 
h 

D ( t )  = -D(cs)(l - t Z ) - O * ’  

It should be noted that the square root singularities are assumed here 
merely for computational convenience, and they are only used in the first 
iteration.* This is discussed further in the next section. 

With these changes, equations (2.6) and (2.10) take on the following 
forms: 

24K+ i)p a 
-[b(j)(l - j 2 ) - O . 5 ] ;  x = 0, - 1s 7, € S  1; (3.3) - - 

Kk,h a j  

sflb(i)(l-P)-o.5dF= l ;x=O,  -1 I ts1  (3.4) 

1 
The function R(ji, i) is given next: 

2[2(5-+ 1) - ~ ( j  + T+ 2)] 8 ( j  + I ) (T+ 1) 
( j i  + t+ 2)2 ( j i  + t+ 2)3 

- 

(3.5) 
- 

A discussion of the order of singularities for the case where the adhesive is taken as 
rigid is given by Hein and Erdogan.’O 
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ADHESIVELY BONDED INSERT 139 

The spring constant k, is estimated from the mechanical properties of 
adhesive materials representative of the ones used in i n d ~ s t r y . ~  A simple 
dimensional analysis carried out on eqn (2.1) shows that the appropriate 
units for the equivalent spring constant are [for~e/(length>~]. If G is the 
shear modulus of the adhesive and t is its average thickness when 
applied to such materials as aluminium or titanium alloys, then k, is 
given by: 

G k, = - 
t 

Numerical results were obtained for several values of k,. The range 
of values considered was based on two adhesives which are used in 
industry. Their properties will be discussed in the next section. 

The kernel of the right-hand side of eqn (3.3) has a Cauchy-type 
singularity. The numerical method introduced by Gerasoulis and 
Srivastav4.’ is used here to reduce the right-hand side of (3.3) to a 
system of linear algebraic equations. The method consists of replacing 
the integral equation by integral relations at a set of points. Piecewise 
linear functions are then used to approximate the integrand at a finite 
set of (collocation) points. The values of the unknown function at those 
points are then obtained via closed form integration. 

Equation (3.3) is thus reduced to a system of linear algebraic 
equations which may be written in matrix form as follows: 

Here, the symbol [ ] denotes a two-dimensional matrix, while { } 
denotes a column matrix. The integration points h, k = 1, 2, .. ., 
2N + 1, are chosen to be equally spaced in the interval - 1 6 5; 1, 
and the collocation points y j  are chosen in the same interval such 
that TjsyjsTj+l, j =  1, 2, .. ., 2N. The matrix A contains the co- 
efficients of the unknowns D(Tk) and they are as given in reference 
5. The constant el is given by 

2n(x+ 1)p 
Ick,h 

c1 = 

The solution is obtained using an iterative 

(3.8) 

method. As a first 
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140 G. K. HARITOS AND L. M. KEER 

approximation, b(h) are set equal to the results obtained from the 
solution of the problem which assumes that the insert is perfectly 
bonded at the half plane, i.e., the case where the spring stiffness k, 
tends to infinity. Simple matrix multiplication leads to numerical 
values for the slopes of the normalized stress discontinuities at the 
collocation points j j .  These results are fitted using cubic splines, and 
then numerically integrated using Gauss’ formula (see, e.g., references 
11 and 12) to obtain values for b at fk. These values are normalized 
so that the equilibrium equation (3.4) is satisfied, and the results are 
substituted back into eqn (3.7) for the next iteration. This process is 
repeated until a convergence criterion is satisfied. Upon convergence, 
the results are used to compute the stresses generated in the contact 
region. The shear stresses are obtained from eqn (3.2). To compute the 
normal stresses, equation (2.1 1) is first normalized using eqns (3.1) and 
(3.2); this yields the following expression: 

D(Q(1- t l ) - 0 . 5 d t  

D(rj(1 - P ) - o . S [ ( j ,  $.It ; x = 0, - 1  g j 6 1 (3.9) -1 1 

+ 

The function E ( j ,  9 is given by 

1 1 3 ~ - 1  2[3(f+ I ) - K ( ~ +  I)] - 8( j+ l)(f+ 1) + 
€f;(Vl Q =x L+ f +  (j j  + f +  2)2 ( j + f i - 2 ) 3  

(3.10) 

Equation (3.9) may now be written as a system of linear algebraic 
equations exactly as it was done with the left hand side of eqn (3.3). 
Numerical values for the normal stresses at collocation points are 
obtained by multiplying the matrix of the coefficients of this system of 
equations by the solution vector (D(9). 

The Gerasoulis-Srivastav technique4 is also used to obtain numerical 
results for the opening case. First, equation (2.15) is normalized and the 
dislocation densities are given singularities at the ends by making the 
following substitutions: 

y = + h ( j  + 1); t = + h(r + 1); (restated) (3.1) 

(3.11) 
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ADHESIVELY BONDED INSERT 
With these substitutions, equation (2.15) becomes: 

COD 
2 

+ k(-)]; x = O ,  - 1595 1 

141 

(3.12) 

The equivalent spring constant for the adhesive in tension, k, is given 
by the following relation: 

(3.13) 

Numerical results were obtained for values of E corresponding to the 
range of G values used in the shear case. A detailed discussion of this 
is presented in the results and discussion section. 

Equation (3.12) is reduced to a system of linear algebraic  equation^,^ 
and then placed in matrix form as follows: 

E k = -  
t 

The matrix [w contains the coefficients of the unknown normalized 
dislocation densities, and c2 is given as 

n(u+ 1) 
c2 = (3.15) 

L 

Premultiplication of both sides of eqn (3.14) by the inverse of 
[MI leads to the following relation: 

The solution for this equation is also obtained via an iterative method. A 
first estimate of the values in the column matrix { -r,(O,y3 + k(F)} is made by setting them equal to some percentage 

of the opening pressures rxx(o,jj). The matrix multiplication indicated 
at the right-hand side of eqn (3.16) leads to the initial estimate for 
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142 G. K. HARITOS AND L. M. KEER 
the dislocation densities &). These values are next used to compute the 
corresponding crack opening displacements from eqn (2.16). First, 
equation (2.16) is normalized by making the substitutions given in (3.1) 
and (3.11). The resulting expression may be written in the following 
form: 

3 = 3 [UP’ - Ui”]. =- - 1: B(z)(~ - P ) - o . ~ ~ z  - 1 a 5 1 
4P 

(3.17) 

The values of + (COD) are needed at the collocation points 
j j .  Values of S(z) have been calculated at the integration points 
these values are numerically interpolated using cubic splines. Then, by 
setting a = j j j ,  Gaussian integration leads to the desired values of + 
(COD) at pj. These results are then substituted into the right-hand side 
of (3.16) for the next iteration. This procedure is repeated until a 
convergence criterion is satisfied. 

4. RESULTS AND DISCUSSION 

The numerical analysis was carried out for N = 9 and N = 17, cor- 
responding to 19 and 35 integration points, respectively. There was no 
significant difference between the two sets of results. The applied load 
P and the depth h were set equal to 1 for all cases. Results were 
obtaincd for a range of tensile and shear elastic moduli E and G. The 
values considered were set according to the properties of two 
commercially available adhesives. The first is a relatively rigid one, 
known as FM-73, manufactured by American Cyanamid, Bloomingdale 
Division. It is an’elastomer-modified epoxy material. Its properties were 
experimentally determined by the Kearfott Division of Singer.13 The 
second adhesive material is of relatively low rigidity; it is an experimental 
one component urethane adhesive produced by Goodyear coded 
AX37J922.I4 Average G, E, and t values for these materials are given in 
Table I. 

The ratio E/G for the AX37J922 adhesive is equal to 2.907. Poisson’s 
ratio for this material is approximately equal to 0.45. These values for 
E and G (Table I) are in good agreement with the theoretical 
relation between E, G, and v :  

E =  2(1 + v)G (4.1) 

However, the experimentally computed value of E for FM 73,13 does 
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' ADHESIVELY BONDED INSERT 143 
TABLE I 

Experimentally determined properties of adhesives (references 13, 14) 
Shear tests Tensile tests 

Average Average Average Average 
Bond Line Modulus, G Bond Line Modulus, G 
Thickness, (psi) Thickness, (psi) 
t (inch) t (inch) 

FM 73 0.0047 84,000 0.0045 360,000 
AX37J922 0.0050 15.000 0.0050 43.600 

not correspond to the value given for G. When these values are 
substituted in eqn (4. l), the resulting value for v is 1.14. Since v cannot 
be greater than 0.5, the value used for E in this case was adjusted to 
be consistent with the one for the shear modulus. Taking v = 0.35 and 
G = 84,000 psi, equation (4.1) gives E = 226,000 psi; this value will be 
used in lieu of the one given in Table I. Values for k, and k may 
now be computed following equations (3.6) and (3.13). Numerical 
results were obtained for eight sets of k,, k values (see Table 11). 
The ones coded B and G correspond t6  AX37J922 and FM 73, 
respectively. In addition, four intermediate sets of values were chosen 
at equal intervals between B and G (C-F), as well as two sets outside 
the B to G range (A, H). 

TABLE I1 
Shear and tensile spring constants 

Code k,(i bs/in') k(lbs/in3) 

A 0.0022 x 107 0.042 x 107 
B 0.3000 x 107 0.872 x 107 
C 0.5878 x lo7 1.702 x 10' 
D 0.8956 x lo7 2.532 x 10' 
E 1.1934 x 10' 3.362 x 10' 

G 1.7890 x lo7 5.022 x 10' 
H 2.0868 x lo' 5.852 x 10' 

F 1.4912 x 10' 4.192 x lo7 

Two adherend materials were considered The 7075-T6 aluminium 
alloy and the Ti-6A1-4V titanium alloy. Both of these materials find 
widespread application in aircraft structures. Material constants for the 
aluminium alloy are taken as E = 10.4 x lo6 psi, p = 3.75 x lo6 psi, 
and v = 0.33; the ones for the titanium are E =  16 x lo6 psi, 
p = 6.4 x lo6 psi, and v = 0.34. All results plotted here are the ones 
obtained for the plane strain case with N =  17, and with 
Ti-6A1-4V being the adherend material. 
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FIGURE 2 Normalized Shear Stress Distribution at x = O  for the shear pullout 
problem. 

The normalized shear stress distribution generated during the shear 
pullout of the insert is plotted in Figure 2 for all k, values con- 
sidered, as a function of the (non-dimensionalized) distance from the 
free surface. As given in Table 11, the curve identified by A 
corresponds to the case where the adhesive has the least rigid shear 
spring constant k, = 2.2 x lo4 l b ~ / i n . ~  At the other extreme, curve H 
gives the shear stress distribution for the case where the most rigid ad- 
hesive is used. This figure shows that the shear stresses attain their 
maximum values near the tip of the insert, and that they are 
smallest near the free surface of the half plane. It should be reiterated 
here that although singularities are put in when the adhesive is 
assumed rigid for the first iteration (see equation 3.2), this is merely the 
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first step in an iterative process. The final adhesive stress distribution 
will not be singular, since the presence of elastic springs tends to 
“relax” such behavior near singular points. In the lower limiting case, 
A, the variation is not detectable and the stresses are constant along 
the insert. The difference between the shear stresses near the tip and those 
near the free surface is most pronounced for the case involving the most 
rigid adhesive. As the rigidity of the adhesive increases these results 
converge to the ones obtained for the “perfectly bonded” case,6 
where the adhesive is taken as rigid. It should be noted that only this cuse 
will produce the singularities encountered at bimaterial interfaces. All 
cases replacing the adhesive with a series of linear springs will result in 
nonsingular bond stresses. It is also interesting to note that the curves 
seem to “pivot” about a point near which the value of y is 
approximately 65% of h. This behavior of the shear stresses is pre- 
dicted by a simple 1-D model analysis, in which a finite rigid strip is 
elastically bonded to a semi-infinite elastic strip and loaded by an end 
force so that the adhesive undergoes shear deformation.? 

These results show that the adhesive will tend to fail (yield) near its 
tip first. This will result in a redistribution of the stresses along the bond 
line. This type of non-linear behavior will be investigated in future 
work. 

The non-dimensionalized normal stress distribution is shown in 
Figure 3 as a function of the normalized distance from the free 
surface. For clarity, only the two extreme cases are plotted. These figures 
show that the maximum normal stresses occur near the free surface, and 
they tend to zero as y approaches h. It is also observed that these 
stresses vary significantly with k, only at their extreme values near 
y =  0. There, the stress increases with increasing k,. Away from 
y = 0, the normal stress distributions seem to be independent of the 
rigidity of the adhesive. 

These results are significant, especially when viewed in light of the 
shear stress results (Figure 2). When the adhesive fails in shear, 
initially near the tip, residual compressive stresses, such as those 
encountered in fiber reinforced composite materials,’*15 would tend 
to keep the debonded surfaces in contact, thus inducing friction forces 
in the failed region. This in turn would tend to counter shear propaga- 
tion of the crack at the fiber-matrix interface. Since the normal stresses 

?This 1-D model comparison was pointed out by Professor P. J. Torvik, Air 
Force Institute of Technology. 
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FIGURE 3 Normal Stress Distribution (non-dimensionalized) at x = 0 for the shear 
pullout problem (maximum and minimum k, only). 

in this region are negligible, the residual stresses would dominate and 
the crack surfaces would remain in contact. However, as the adhesive’s 
damaged zone increases in length, thus moving away from the tip, the 
normal stresses increase, and at some distance from the tip they will 
balance the residual compressive stresses, thus eliminating friction. 
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Beyond that point, the growth of the damaged zone may accelerate 
under the combined action of the shear stresses and of the normal 
stresses, until complete debonding is reached. This suggested failure 
process seems to be in very good agreement with the experimental 
results obtained by Atkinson, et ~ 1 . ' ~  for the axisymmetric case. 

The results obtained from the solution of the problem involving the 
edge crack subjected to opening pressure are plotted in Figure 4. The 
crack opening displacements are symmetric about the x = O  axis 
(see Fig. 1). The curves shown represent the opening at either side 
of the insert as a function of (normalized) distance from the free 
surface. Thus, these are the displacements which are multiplied by tbe 
tension spring constant, k, to obtain the resistance to opening due to 
the adhesive. 
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FIGURE 4 Crack Opening Displacements at x = 0 for the opening problem. 
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FIGURE 5 Normalized Net Opening Pressure - [ T~~ - X (  y)] at x = 0 for the 

opening problem. 

These results show that the opening displacements increase with de- 
creasing adhesive stiffness, k. This is what one would expect, con- 
sidering the opening pressure, 7xx, does not vary substantially for dif- 

. ferent adhesive materials (k,), as shown in Figure 3, while the resistance 
to opening, k(COD/2), increases considerably with increasing k. Thus, 
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the magnitude of the right-hand side of eqn (2.15) is very sen- 
sitive to the magnitude of k. This is shown in Figure 5, where the 

normalized “net” opening pressure, -- [ - txx + k ( - “y)], is plotted 

for all cases as a function of distance from the free surface. This figure 
shows good agreement between the applied “net” opening pressures 
(increasing with decreasing k) and the crack opening displacements 
shown in Figure 4. 

It should also be noted that the crack opening displacements near 
the tip 0, = h) are between one and two orders of magnitude smaller 
than the ones near the surface O,=O).  This behavior is con- 
sistent with the variation in the net opening stresses plotted in Figure 
5. Thus, the crack is essentially closed over a portion of its length near 
the tip of the insert, and the length of the closed segment increases 
with k. It should be emphasized here that this analysis does not account 
for any residual compressive stresses that may be introduced during 
the manufacturing processes. The presence of any such stresses would 
clearly tend to increase the length over which the crack is closed. 
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